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Abstract
We propose a novel setup for optically trapping neutral atoms based upon the focusing
properties of metamaterials. The optical trap is created at the focal point of an inverted-opal
crystal when the latter is illuminated by a localized light source. The trap is located away from
the surface of the inverted-opal lens, rendering the Casimir–Polder attraction exerted by the lens
on the atom negligible. The key properties of the proposed optical trap are its subwavelength
dimensions, the tunability of the trapping frequency, the facile translation of the trap without
moving the lens, and the potential for creating an array of traps. We also study the ground state
of a cesium Bose–Einstein condensate formed within the proposed trap by solving the
corresponding time-independent Gross–Pitaevskii equation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Atom trapping through purely optical means has been
promoted as a more versatile and robust technique over
magnetic trapping since optical potentials allow atoms in
all hyperfine states to be confined whilst enabling, at the
same time, the application of Feshbach resonances in the
trapped atoms [1, 2]. A significant attention has been paid to
dielectric structures which produce an optical potential when
illuminated by an external source [3, 4]. The main challenge
in trapping atoms with these structures and subsequently in
the realization of corresponding atom chips is to overcome the
strong Casimir–Polder (CP) potential exerted on the trapped
atoms by the structure. The simplest approach is to confine the
atom in the evanescent field near the surface of high-refractive-
index material, under (oblique) plane wave illumination. In
this case, however, the decay length of the surface state in
the direction normal to the interface is large and fixed by
the dielectric constant of the chosen high-index material; this
obstructs the emergence of a minimum of the total potential
(optical + CP + gravitational). In a recent work, an alternative
approach has been proposed, where the atomic gas is confined
within a surface state of a truncated one-dimensional (1D)
photonic crystal [5]; in this case, the free-space decay length

of the surface state can be tuned to a desired value by altering
the geometric characteristics of the photonic crystal.

In this work we propose a three-dimensional (3D) all-
optical trap for neutral atoms which operates similarly to the
optical tweezers. The optical potential is created at the focal
point generated from the illumination by a localized source of
a flat metamaterial lens [6]. The metamaterial is a Si-inverted
opal (SiIO), which can create the image of a light source due
to the existence of left-handed frequency bands, in which case
negative refraction (NR) and focusing phenomena occur [7].
Since the dielectric function of Si remains constant within a
wide spectral range, the left-handed bands of the metamaterial
lens can be properly tuned by varying the period of the SiIO
in order to match the desired atomic transition responsible for
the trapping. The focal point providing the optical trap can
be formed at a distance over one 1 μm away from the surface
of the metamaterial; this renders the CP potential negligible.
In this case, the conditions for the formation of a potential
minimum are less restrictive as only the gravity adds to the
optical potential. The proposed all-optical atomic trap atop a
flat metamaterial lens exhibits several other advantages: the
absence of an optical axis, the translational invariance of the
trap and the potential to create multiple traps [6]. The paper is
organized as follows: section 2 presents the basic formalism
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for the calculation of the optical and CP potentials, which,
together with gravity, provide the total potential experienced
by the trapped atom. Section 3 applies the formalism to the
case where an SiIO metamaterial lens is used to trap a Cs atom.
Section 4 presents a discussion and the future outlook of the
proposed trap while section 5 concludes the paper.

2. Theory

2.1. Optical potential

The lens producing the image trap is a finite slab of a
metamaterial consisting of a number of planes of spheres
with the same 2D periodicity. In order to probe the imaging
properties of such a structure, we consider the electric field
emitted by a localized source. The latter is written as a series
of outgoing spherical waves [8],

E(r) =
∞∑

l=1

l∑

m=−l

{
aHlmh+

l (qr)Xlm(r̂)

+ aElm
i

q
∇ × [h+

l (qr)Xlm(r̂)]
}
, (1)

Xlm(r̂) are the so-called vector spherical harmonics [8] and h+
l

are the spherical Hankel functions of order l. The wavenumber
is q = ω/c, where c = 1/

√
μεμ0ε0 = c0/

√
με is the velocity

of light in the medium surrounding the source.
Since we wish to study the transmission of the above field

through a slab of a number of periodic planes of spheres, it is
advantageous to transform the field of equation (1) to a basis
of plane waves consistent with the 2D periodicity of the planes
of spheres. If the source is placed to the left of the slab (see
the calculation setup in figure 2), the field radiated to the right
and incident on the slab is written as (assuming the center of
coordinates to be located at the localized source) [9]

Einc+(r) = 1

S0

∫ ∫

SBZ
d2k‖

∑

g

Einc+
g (k‖) exp(iK+

g · r) (2)

with

E inc+
g;i (k‖) =

∞∑

l=1

l∑

m=−l

∑

P=E,H

�Plm;i (K+
g )aPlm (3)

where i = 1, 2 are the two independent polarizations (polar
and azimuthal) which are normal to the wavevector [10–12]

K±
g = (k‖ + g, ±[q2 − (k‖ + g)2]1/2). (4)

The vectors g denote the reciprocal-lattice vectors correspond-
ing to the 2D periodic lattice of the plane of spheres and k‖
is the reduced wavevector which lies within the surface Bril-
louin zone (SBZ) associated with the reciprocal lattice [10–12].
When q2 < (k‖ + g)2, the wavevector of equation (4) defines
an evanescent wave. The coefficients ΔPlm are given else-
where [12]. The incident field of equation (2) will be partly
transmitted through the slab under study. The transmitted field
will be given by

Etr+(r) = 1

S0

∫ ∫

SBZ
d2k‖

∑

g

Etr+
g (k‖) exp[iK+

g ·(r−d)] (5)

with

E tr+
g;i (k‖) =

∑

g′,i ′
Tgi;g′i ′ E inc+

g′i ′ (k‖). (6)

d is a vector joining the source to the image. The transmission
matrix Tgi;g′i ′ appearing in equation (6) is calculated within
the framework of the layer-multiple-scattering method, which
is an efficient computational method for the study of the EM
response of three-dimensional photonic structures consisting
of non-overlapping spheres [10–12] and axisymmetric non-
spherical particles [13]. The layer-multiple-scattering method
is ideally suited for the calculation of the transmission,
reflection and absorption coefficients of an electromagnetic
(EM) wave incident on a composite slab consisting of a number
of layers which can be either planes of non-overlapping
particles with the same 2D periodicity or homogeneous plates.
For each plane of particles, the method calculates the full
multipole expansion of the total multiply scattered wave field
and deduces the corresponding transmission and reflection
matrices in the plane wave basis. The transmission and
reflection matrices of the composite slab are evaluated from
those of the constituent layers.

The calculation of the incident (equation (2)) as well
as the transmitted field (equation (5)) requires a numerical
integration over the entire SBZ. In the case of the SiIO
examined below, the spheres in each plane occupy the sites
of a square lattice and, therefore, the SBZ is also a square.
The SBZ integration of equations (2) and (5) is performed by
progressively subdividing the SBZ into smaller and smaller
squares, within which a nine-point integration formula [14]
is very efficient. Using this formula we managed excellent
convergence with a total of 73 728 points in the SBZ. Also,
the inclusion of 37 reciprocal-lattice g-vectors along with
an angular-momentum cutoff lmax = 7 provided converged
results.

From equations (5) and (6) we obtain the electric-field
intensity I (r) = 1

2ε0|E(r)|2 on the right side of the structure.
Having found the distribution of I (r), the optical-dipole
potential for a given atomic transition is given by [5]

Uopt = βs
h̄�2

8δ

I (r)
Isat

(7)

where βs = 2/3 and Isat the saturation intensity [5]. � is the
linewidth of the atomic transition and δ is the detuning of the
incident radiation frequency from the transition frequency ω0

(these parameters are explained in figure 1).

2.2. Casimir–Polder potential

The CP potential is given by [15]

UCP = 2h̄μ0

∫ ∞

0
du u2α(iu)

∑

i

Gii (r, r; iu) (8)

where α is the atomic ground-state polarizability and G E E
ii ′ the

electric-field component of the EM Green’s tensor associated
with the trapping structure. For a finite slab of a metamaterial,
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Figure 1. Parameters concerning an atomic transition between states
|1〉 and |2〉.

the Green’s tensor is given by

G E E
ii ′ (r, r;ω) = gE E

ii ′ (r, r;ω)− i

8π2

∫ ∫

SBZ
d2k‖

×
∑

g

1

c2 K +
g;z
vgk‖;i (r) exp(−iK+

g · r)ê1;i ′(K+
g ) (9)

with

vgk‖;i(r) =
∑

g′
R1g′;1g exp(−iK−

g′ · r)ê1;i (K−
g′). (10)

gE E
ii ′ is the free-space Green’s tensor and ê1;i (K±

g ) the polar
unit vector normal to K±

g . R1g′;1g is the reflection matrix which
provides the sum (over the g) of reflected beams generated
by the incidence of the plane wave from the left of the
slab [11, 12]. We note that the above expressions (equations (9)
and (10)) are derived from the transverse part of the general
classical wave Green’s tensor [16].

2.3. Ground state of a Bose–Einstein condensate

For a thorough study of the trapping properties of the proposed
setup, we need to calculate the ground-state properties of a
Bose–Einstein condensate (BEC) formed within the trap. We
consider the case of a BEC in a dilute atomic gas, in which case
the Gross–Pitaevskii equation (GPE) [17, 18] applies

(−h̄2

2m
∇2 + Utrap + 4π h̄2asc N

m
|ψ(r)|2

)
ψ(r) = μcψ(r),

(11)
where ψ(r) is the BEC wavefunction, Utrap is the total
(optical + CP + gravitational) trapping potential, asc is the s-
wave scattering length characterizing the two-body interaction
between the atoms, N is the total number of atoms in the
condensate, and μc the chemical potential. Equation (11)
is solved by employing the basis-set expansion technique
and corresponding programming code of [19]. Based on
this technique, the trapping potential is approximated by a
harmonic potential around one of its minima. In this case, the
condensate wavefunction ψ(r) is expanded in terms of either
simple-harmonic-oscillator orbitals or Thomas–Fermi orbitals
and equation (11) is solved self-consistently until convergence
is reached. The solution of equation (11), apart from the BEC
wavefunction ψ(r) of the ground state, also provides the total
energy per atom.

Figure 2. Setup of the all-optical atom trap.

3. Results

The setup of the proposed optical trap is shown in figure 2.
It consists of finite slab of SiIO and a localized light source.
An SiIO is a 3D photonic crystal made from air bubbles in
Si, in an fcc-lattice configuration [20]. Originally, SiIOs were
introduced as artificial materials with absolute photonic band
gap [21]; however, as has been shown recently, the same
structure can also act as a metamaterial exhibiting NR and,
subsequently, focusing properties [7]. This means that an SiIO
forms the image of a localized source when the latter emits
radiation at a frequency belonging to a NR frequency band.
The image of the source corresponds to a local maximum of
the electric-field intensity which can be used as an optical trap.
As a localized source one can use, for example, a quantum dot
or a fluorescent molecule. However, one has to match the NR
frequency band of the SiIO with a given atomic transition. This
requires a certain amount of tunable response and operation of
the proposed optical trap. Due to the almost constant value
of the Si dielectric function within the frequency spectrum
under study (infrared regime), the frequency band structure of
the SiIO can be scaled according to the dimensions of the air
spheres, allowing for an overlap between the NR band and the
atomic-transition band. To be specific, we select a Cs atom
using the D2 resonant transition as in [5] with a frequency ω0 =
2π × 3.5 × 1014 Hz. According to [7], optimal focusing due to
NR occurs at a scaled frequency ωa/2πc = 0.603 (a is the fcc-
lattice constant of the SiIO). By assuming a red detuning of the
order of δ = ω−ω0 = −2π×0.1×1014 Hz in the laser source,
the lattice constant of the SiIO should be a = 0.532 μm so that
the D2 transition falls within a NR band. As a localized source
we have chosen a silver-coated SiO2 nanosphere (metallic
nanoshell). Namely, the scattered EM field from such a
sphere simulates the EM field emitted by a dipole antenna of
nanometer size due to the excitation of surface-plasmon (SP)
resonances [22]. The emission frequency corresponds to one of
the two SP resonances of the nanoshell, which can be properly
tuned by varying the thickness of the silver shell [23]. If a
Drude-type dielectric function is assumed for silver (ε(ω) =
1−ω2

p/[ω(ω+ iγ )] with h̄ωp = 3.8 eV and γ /ωp = 0.1) then
by choosing a shell thickness of 33.8 nm and a total nanosphere
radius of 52 nm the particle-like SP of the silver-coated SiO2

nanosphere matches the D2 transition frequency ω0 of Cs plus
the detuning δ.

The source is placed at a distance a from the left side of
finite slab of SiIO consisting of eight (100)-fcc planes of air
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Figure 3. (Color online) Optical, gravitational, and total potentials
(dotted, dashed and solid lines, respectively) for the case of Cs atoms
as a function of the distance from the right surface of the SiIO lens
along the direction (x, y) = (0, 0).

spheres in Si (ε = 12.25). The source is placed right against an
air sphere of the SiIO, i.e., so that a line connecting the centers
of the nanoshell and an air sphere normal to the SiIO slab. As
the frequency ω0 + δ falls within an NR frequency band of the
SiIO (see above), the SiIO slab focuses the scattered field at an
area at the right surface of the slab.

The D2-transition linewidth is � = 2π × 5.3 × 106 Hz
and the saturation intensity Isat = 1.1 mW cm−2. In figure 3
we show the optical potential Uopt as a function of the distance
from the right surface of the SiIO slab, along a direction normal
to the slab (z-axis) and passing through the center of the source.
We have chosen the maximum of the intensity I (r) along
this direction to be I0 = 105 mW cm−2 (about 60% of the
incident intensity) in order to obtain an optical potential of a
few μK. The minimum of the optical potential Uopt occurs
at a distance 1.28 μm from the surface of the SiIO slab. In
figure 4 we show the distribution of the optical potential Uopt

within the xy-plane, for the above distance. It is evident that
there exists a prominent minimum of Uopt at (x, y) = (0, 0)
with FWHM w = 0.15 μm, which is much smaller than both
the wavelength (λ = 2πc/(ω0 + δ) = 0.882 μm) and the
lattice constant of the SiIO crystal (a = 0.532 μm). Along
the z-direction (normal to the SiIO slab) the corresponding
FWHM is about 0.32 μm, which heralds the creation of a
subwavelength trapping potential similar to that obtained with
sophisticated macroscopic experimental setups [24]. Along
with the main potential minimum there exist other satellite
minima as a result of the inherent periodicity of the SiIO lens,
which makes the focusing phenomenon imperfect [7]. The
satellite minima, although shallower than the central one, can
also act as optical traps, suggesting the possibility of having
multiple traps with the proposed setup. It is worth noting that
periodic (infinitely multiple) arrays of optical traps in a plane
parallel to the surface (2D traps) can be created by simply
illuminating a periodic structure with a plane wave [25]. In this
case, however, a potential minimum in the z direction (normal
to the surface) cannot occur either in the far- or in the near-
field regime. In the far-field regime one only has plane waves

Figure 4. Distribution of the optical potential for Cs atoms in the xy
plane at a distance 1.28 μm from the SiIO lens, for the setup of
figure 1. The potential is in units of μK.

whilst the in the near-field regime (close to the lens surface)
the contribution of the CP potential to the total one is large and
therefore renders the trap unsuitable for cold atoms.

In order to determine the actual trapping potential one
must also take into account the CP (equation (8)) and the
gravitational potential. The gravitational potential is given by
Ugrav = mgr , where m and g are the atomic mass and the
gravitational acceleration, respectively, and r is the distance
from the right surface of the SiIO lens. Ugrav is also depicted
in figure 3. By calculating the EM Green’s tensor in the
manner of equations (9) and (10) and substituting the atomic
polarizability of Cs [26] it turns out that UCP is of the order
of a few nK when the distance between the atom and the
trapping structure is of the order of 1μm and above. Therefore,
for such distances the CP potential is negligible compared to
the gravitational one and, in our case, to the optical potential
for this order of radiation intensity. The total potential is
thus determined as the sum of the optical and gravitational
potentials as shown in figure 3. The position of the local
minimum of the total potential is only slightly shifted relative
to the minimum of the optical potential by the presence of the
gravitational potential.

We note, however, that the actual depth of the trap
corresponds to the ground state of Cs atom(s) within the total
potential. Therefore, we solve the GPE (equation (11)) for a
BEC of Cs atoms within the trapping potential of figures 3
and 4. The latter is approximated by a harmonic-oscillator
potential of cylindrical symmetry around the global minimum,
i.e.,

Utot = 1
2 m(ω2

x x2 + ω2
y y2 + ω2

z z2) (12)

with ωx = ωy = 59.3 Hz, ωz = 23.75 Hz. The s-wave
scattering length is taken as asc = 440a0 (a0 is the Bohr
radius), which is an optimal value for the formation of a Cs
BEC [4]. In table 1 we show the BEC ground-state energy
for different numbers of Cs atoms in the manner described
in section 2.3. Obviously, in all cases the ground level lies
very close to the bottom of the trapping potential. However,
as the number of the trapped atoms increases, the repulsive
interactions among them raise the energy of the ground state.
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Table 1. The total energy per atom (in units of h̄ωx ) for different
numbers of atoms.

N Energy/N

1 1.200 5289
10 1.202 3934

100 1.220 5573
1 000 1.369 7581

10 000 2.115 4997

4. Discussion and outlook

As shown above, the occurrence of the minimum of the optical
potential at a distance for which the CP potential is negligible
allows for an easier manipulation of the optical trap: due to
the monotonic change of the gravitational potential, the latter
does not influence the position of the minimum of the total
atomic potential. This might allow the movement of the trap
by translating the source within the surface of the SiIO lens
provided that the depth of the trap does not alter significantly
(as in [6] where the movement of a trapped microparticle
was demonstrated). This is difficult to achieve when the CP
potential comes into play [5] since this type of potential is
fixed by the composition and geometrical parameters of the
trapping structure. For the same reason, the actual realization
of proposals of optical traps created by the introduction of point
defects in photonic crystals [27] is challenging since the trap
is created close to the surface of the photonic crystal where
the CP potential dominates. The same dominance of the CP
potential is true in the case where the optical traps are created
inside the photonic crystal [28].

One can now ask the question of whether it is possible to
use infrared metamaterials with negative refractive index [29]
instead of the SiIO. This type of NR metamaterials is
subwavelength and so is the focal point created when they
are illuminated by a localized source. In such a manner, one
might be able to realize optical traps of a few nanometers
size, enabling the realization of scalable quantum computers.
However, such NR metamaterials are usually made from
metallic components which are inherently lossy. In this case,
the focal point is created very close to the surface, reviving the
role of the CP potential. The same is true in the case of an
optical trap generated near a microscope tip [30].

Another key property of the proposed atomic trap is its
tunability: by proper choice of the lattice constant of the SiIO
lens one can tune the working frequency of the trap to the
relevant atomic transition. Another important property of the
proposed optical trap is the absence of a particular optical axis.
This fact allows the creation of multiple optical traps on the
same SiIO lens by using more than one light sources. If a
2D lattice of the trap of figures 3 and 4 is desired, the light
sources should be placed far apart in order to avoid interference
effects from the scattering fields from all the sources. On the
other hand, interference effects may be exploited to shape more
efficiently the optical traps and, possibly, decrease their size.

We note that the avoidance of the CP potential as a result
of the formation of the trap at a distance of more than one
micron from the surface of the SiIO is in the opposite direction
of the current trend in atom chips, where the traps are formed

as close as possible to the surface. If the movement of the trap
is not demanded, the proposed optical nanotrap can be used in
conjunction with a typical magnetic trap such as a quadrupole
trap formed by a pair of opposed Helmholtz coils [1]. In
this case, the z-component of the magnetic field could also
contribute to the neutralization of the CP potential, resulting
in a total potential minimum closer to the SiIO surface.

Before the atoms are trapped in the proposed optical trap
they need to be precooled by other means. This can be
achieved, for example, by passing the atoms through a Zeeman
slower [1] where their velocities become small enough to be
trapped inside the proposed nanotrap. This is a common
cooling technique used in trapping atoms with purely optical
means.

A final note on the impact of the unavoidable fabrication
imperfections on the proposed optical trap. In single-crystal
opaline structures such as the SiIO lens considered here, the
common types of lattice disorder are point defects and stacking
faults [31]. The concentration of both types of disorder is too
small to influence the optical properties of thin slabs of SiIO
such as the eight-planes-thick slab considered here. Even the
presence of one or two stacking faults does not influence much
the transmission spectrum in the pass bands; stacking faults
solely introduce defect states within the band gap of SiIO [32].
Typical samples of SiIO are polycrystalline in the sense that
a cut of an SiIO contains domains corresponding to different
crystallographic planes [33]. However, since the light sources
used for creating the optical traps are much smaller than a
typical domain size (around 50 μm), polycrystallinity is not
expected to pose a problem to trapping.

5. Conclusions

We have proposed a novel setup for trapping neutral atoms
via purely optical means. The optical trapping potential
is generated at the focal point of a metamaterial lens (slab
of Si-inverted opal) which is probed by a localized source.
By placing the source far enough from the metamaterial
lens, the corresponding focal point occurs far from the lens,
diminishing the contribution of the CP potential to the total
atomic potential. This latter effect offers the possibility of
translating the trap by simply moving the nanoshell. By proper
tuning of the geometrical parameters of the metamaterial lens
one can actually trap all kinds of atoms. The proposed all-
optical trap can find application in various areas such as the
control of chemical reactions by moving the participating
atoms, in photoassociation of ultracold atoms and in nanoscale
trapping of DNA [34]. Also, the prospect of having arrays
of traps can find application in high-resolution detection of
neutral particles and in ultracold atomic collision studies [34].
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